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Τhe infectious cycle of human papilloma virus 
(HPV) is entirely carried out in a fully differen-

tiated squamous epithelium1. It is essential that the 
virus particles gain access to the basal layer of the 
epithelium and enter to the dividing basal cells2. For 
this purpose, a micro - abrasion of the epithelial sur-
face is necessary, which removes the epithelium but 
retains intact with its basement membrane. Meta-
plastic epithelium is thinner, more fragile and may 
be more susceptible to the micro - abrasion process 
and the HPV infection1.

Viral structure
HPVs are small, non - enveloped viruses1. They have 
circular double - stranded DNA in an icosahedral 

capsid2. They are completely species and tissue spe-
cific. Their genome usually contains around 8,000 
bp and encodes 8 or 9 ORFs (open reading frames)2. 
They have very complex molecular biology, despite 
their small size3. Viral capsid is composed by 2 struc-
tural proteins (L1 and L2)3-5. Moreover, structural 
proteins play important role in efficient virus infec-
tivity2. Also, HPVs have 3 oncogenes (E5, E6 and E7) 
and 2 regulatory proteins (E1 and E2). Oncogenes 
modulate the transformation process. Regulatory 
proteins modulate transcription and replication3,4.

Binding on cell surface receptors
The viral L1 protein binds to the exposed basement 
membrane probably via heparan sulphate proteogly-
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cans (HSPGs) (primary receptor)1,2,6-10. This binding 
results in conformational changes and a distortion of 
the virus capsid1,6-8. Exposed basal keratinocytes (by 
minor trauma or abrasion) during wound healing, 
overexpress syndecan - 1 and increase their ability 
to bind and internalize HPV in vivo9,11. This distortion 
exposes the N - terminus of viral L2 protein to cleav-
age by furin or by proprotein convertase 5/616-8,12,13. 
N - terminus of viral L2 protein, is essential for its cor-
rect conformation in the assembled capsid6,14. More-
over, the cleavage site is absolutely conserved in all 
HPV types1,12-14. Proteolytic cleavage by furin, is nec-
essary for successful infection6,8,12-14. Subsequently 
the viral L2 protein binds to the cell surface and trig-
gers a second conformational change in the virus cap-
sid. This conformational change either exposes the 
binding site on the viral L1 protein for the secondary 
receptor or lowers the affinity for the primary recep-
tor1,6,8,13,14. Viral L1 protein binds on the cell surface 
to α6 integrin (secondary receptor). That binding to 
the secondary receptor, triggers receptor mediated 
endocytosis of HPV1,6,7,10,13-15.

Endocytic pathways
Several endocytic pathways have been described 
for HPV16. However, most HPV types use clath-
rin dependent endocytic pathway6,8,13,14,17,18. That 
pathway is triggered by HPV binding to cell sur-
face receptors. Clathrin coated vesicles become un-
coated after endocytosis and fuse with early en-
dosomes10,19,20. Nevertheless, some HPV types use 
alternative endocytic pathways, including caveo-
lae dependent or clathrin and caveolae independ-
ent endocytic pathways6,8,13,14,17,21,22. Caveolae de-
pendent endocytic pathway is also triggered by 
HPV binding to cell surface receptors. After endo-
cytosis, grape like multicaveolar complexes (cave-
osomes) appear in the cytoplasm10,23. Clathrin and 
caveolae independent endocytic pathway, involves 
tetraspanin enriched microdomains as a platform 
for viral internalization6,13,14,22.

Intracellular trafficking
Clathrin coated vesicles progress to early endo-

somes. Early endosomes progress to late endosomes 
or lysosomes. Alternatively, early endosomes can re-
cycle back to the cell surface24. Molecules in early en-
dosomes, experience a fast decline in pH from neu-
tral to a pH of approximately6. Subsequently, they 
move to late endosomes and are ultimately degrad-
ed in lysosomes, with a pH of approximately5,10,25. 
Nevertheless, HPV can avoid lysosomal degrada-
tion. It can escape from the endosomes to the cy-
tosol, with fusion independent mechanisms includ-
ing membrane disruption and transmembrane pore 
formation. Moreover, the decline in pH in early en-
dosomes results in conformational changes of HPV 
capsid which trigger the escape of the HPV genome 
or the complex of HPV genome and L2 protein from 
the endosomes10,18,25.

Viral L2 protein is necessary for egress of viral ge-
nomes from endosomes, but not for initial uptake 
and uncoating. Specifically, C - terminus of viral L2 
protein is necessary for this function. This feature 
is conserved among HPV types8,26-28. Moreover, viral 
L2 protein interacts with the microtubule network 
via the motor protein dynein. This interaction me-
diates the transport of the complex of HPV genome 
and L2 protein along microtubules towards the nu-
cleus13,26. Caveolae dependent endocytic pathway 
performs internalization at a lower speed. Moreo-
ver, internalization via caveolae is not a constitutive 
process and occurs only upon cell stimulation10,24,29. 
Molecules in caveosomes fail to become acidized. 
Subsequently, they bypass endosomes and move 
to the Golgi body and / or the endoplasmic reticu-
lum10,24,30. For many years it was believed that these 
endocytic pathways were parallel and separate. Re-
cently, it has become evident, that there are com-
plex interactions and cross talk between them10,23,31.

Nuclear entry
HPV L2 protein has nuclear localization signals 
(NLSs), in the n and the c terminus (nNLS, cNLS). 
These NLSs interact with a network of karyopherins 
and mediate nuclear entry of the complex of HPV 
genome and L2 protein via several pathways (kar-
yopherin α2β1 heterodimers, karyopherin β2 and 
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karyopherin β3). Binding of Ran - GTP to the kar-
yopherins, causes dissociation of the import com-
plexes and release the complex of HPV genome and 
L2 protein in the nucleus32-34. Moreover, cell cycle 
progression through early stages of mitosis is crit-
ical for successful HPV infection. Perhaps nuclear 
entry of the complex of HPV genome and L2 protein 
may follow nuclear membrane breakdown during 
early mitosis, rather than active transport via kar-
yopherins13,32,35,36. Finally, the complex of HPV ge-
nome and L2 protein enters the nucleus and subse-
quently the complex localizes at punctate nuclear 
structures responsible for transcriptional process-
es including promyelocytic leukemia (PML) nuclear 
bodies, promyelotic oncogenic domains, and nucle-
ar domain10. HPV transcription and replication oc-
cur in association with PML nuclear bodies13,36,40-42. 
During latent infection, HPV genome maintain as 
autonomous replicating episome in the proliferat-
ing basal cells of the squamous epithelium43,44.

Conclusion
HPV has very complex molecular biology. Despite 
significant advances regarding ιnitial steps and mo-
lecular biology of HPV infection, there are many 
questions to be answered.
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